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smooth nature of the modulation functions f~(x4) or 
u~(r) from § 5. As stated earlier, the continuity of these 
functions is an essential feature of modulated struc- 
tures. 

The author is greatly indebted to Dr Tuinstra (Delft) 
and to Professor Janner and Dr Janssen (Nijmegen) for 
reading and most helpfully criticising the manuscript. 
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Generalized space groups are defined to describe the symmetry of a spin-density Patterson function due 
to the spin-group (generalized magnetic group) symmetry of a spin arrangement. The information on 
spin arrangements obtainable from the generalized space-group symmetry of a spin-density Patterson 
function is discussed. It is shown that one cannot infer from the symmetry of the spin-density Patterson 
function the characteristic spin-group symmetry of a spiral spin arrangement, and an alternate method of 
doing so is given. 

1. Introduction 

The Spin-Density Patterson Function, abbreviated by 
SDPF, is defined as the Fourier transform of the 
intensity of unpolarized neutrons elastically scattered 
from a magnetic crystal (Wilkinson, 1968, 1973). This 
function has been used in determining the spin ar- 
rangements of Mn2P (Yessik, 1968) and vivianite 
(Forsyth, Johnson, & Wilkinson, 1970). Wilkinson & 
Lisher (1973) have discussed the symmetry properties 
of the SDPF due to the magnetic-group symmetry 
of the spin arrangement and the information on spin 
arrangements obtainable from the SDPF. They have 
shown that for multi-domain crystals one may be 
unable to determine the orientation of the spins from 
the SDPF. 

Spin symmetry groups have been defined to describe 
the symmetry of spin arrangements in magnetic 
crystals (Litvin, 1973; Litvin & Opechowski, 1974). 
The theory of spin symmetry groups is briefly reviewed 
in § 2. In § 3 we determine the symmetry of the SDPF 
due to the spin symmetry group of a spin arrangement. 
We show that space groups are inadequate to describe 
these symmetries of the SDPF and define a general- 

ization of the space groups to do so. We then discuss 
the information on spin arrangements obtainable from 
the generalized space-group symmetry of the SDPF. 
In 94 we discuss the information on spiral spin arrange- 
ments obtainable from the SDPF of single-domain 
magnetic crystals. We show that one cannot infer 
from the symmetry of the SDPF the characteristic 
spin symmetry of a spiral spin arrangement, and, as 
in the case of multi-domain crystals, one is unable 
to determine from [the SDPF the orientation of the 
spins. An alterrmtive method is given of determining 
the characteristic spin symmetry of a spiral spin 
arrangement from the SDPF. In § 5 we discuss the 
SDPF of multi-domain crystals and show that in 
general no symmetry information, neither magnetic 
space-group nor spin-group symmetry, on the spin 
arrangement can be inferred from the symmetry of the 
multi-domain SDPF. 

2. Spin groups 

Generalized magnetic groups called spin groups have 
been defined to describe the symmetry of spin arrange- 
ments in magnetic crystals (Litvin, 1973; Litvin & 
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Opechowski, 1974). An element of a spin group is 
denoted by [RxIIRzIV] where R1 and R2 are proper or 
improper rotation matrices, and V is a column matrix. 
When applying an element of a spin group to a spin 
arrangement, the rotation Rt to the left of the double 
verticle bar is defined to act only on the components 
of the spins, while the rotation and translation (R21V) 
to the right are defined to act only on the coordinates 
of the magnetic atoms. Applying a spin-group element 
[RI!IRzIV] to a spin arrangement S(r) therefore means 
replacing S(r) by the spin arrangement denoted by 
[RIIIR2IV]S(r) and defined by (Litvin & Opechowski, 
1974)* 

3 

[R~IIRzIV]S'(r)= ~ (R1)uSJ[(R2IV)-ar] (1) 
j = l  

where i=  1,2, 3. A spin arrangement is said to be in- 
variant under a spin-group element [RxlIR2IV] if 

[RIIIR21V]S(r) = S(r) (2) 

and the group of all such elements is called the spin 
symmetry group of the spin arrangement S(r). 

Elements [RIIIR2IV] of a spin group when applied 
to a spin arrangement are then defined to act both on 
the components of the spins and on the coordinates 
of the magnetic atoms. But, unlike elements of a 
magnetic group, the matrices, Rt, which is applied to 
the components of the spins, and R2, which is applied 
to the coordinates of the magnetic atoms, need not 
necessarily be identical nor differ only by the matrix 
E =  - E ,  where E is the identity matrix. 

Magnetic-group elements have been denoted by 
(F,A) where F=(RIV) and A is either the identity E 
or time inversion E '  (Opechowski & Dreyfus, 1971). 
Magnetic-group elements, in the notation used for 
spin-group elements, are of the form [eaORRI]RIV] 
where 5g = det R, eA = + 1 if A = E and ea = - 1 if A = 
E',  that is, are a special case of spin-group elements 
[RIIIRzIV] where R, = 5REAR2. Consequently, the magnet- 
ic symmetry group of a specific spin arrangement 
is identical with or a subgroup of the spin symmetry 
group of the spin arrangement. 

A spin group has been shown to be a direct product 
of a so-called spin-only group consisting of elements of 
the form [R[IE[0], and a second group called a non- 
trivial spin group (Litvin & Opechowski, 1974). A 
non-trivial spin group contains elements of the form 
[Rt[IR2IV] but no elements of the form [[RIIE[0] with 
R#E.  

The spin-only group of a spin arrangement is de- 
pendent only on whether the spin arrangement is a lin- 
ear arrangement, where all spins are collinear, a planar 
arrangement, where all spins are coplanar, or a spatial 
arrangement, which includes all remaining possibilities. 

* It should be pointed out that definition (1) is somewhat 
different to that introduced by Litvin (1973). This modification 
does not require any changes in Tables 1 and 2 of Litvin (1973), 
except replacing primes by horizontal bars, i.e. Q" is replaced 
by 0. 

The set of all R of elements [RIIE[0] of a spin-only 
group consitute a group b which for the three types of 
spin arrangements is as follows: 

bl = Coo + C2Coo 
b , = E ,  C2 
b, = E .  (3) 

The indices l,p,s denote linear, planar, and spatial 
spin arrangements, respectively. Coo is the group of 
matrices representing all proper rotations about the 
direction of the spins, and Cz is the matrix representing 
a rotation through angle re, which is about an axis 
perpendicular to that direction in the case of b~, and 
to the plane of spins in the case of bp. The matrix 
Cz multiplied by - 1 is denoted by C,. 

A non-trivial spin group, consisting of elements 
[RIIIRzIV] is called a non-trivial spin point group, 
translation group, or space group, according as the 
set of components (RzlV) to the right of the double 
verticle bar constitute, respectively, a point group, 
translation group, or space group. Non-trivial spin 
translation groups containing elements [RIIEIt], where 
R is not E,E, C2, or (72, are characteristic symmetry 
elements of spiral spin arrangements. The theory and 
derivation of all non-trivial spin translation groups 
have been given by Litvin (1973). 

3. Symmetry of the single-crystal spin-density Patterson 
function 

The single-crystal spin-density Patterson function will 
be denoted by P(r). The SDPF consists of series of 
peaks centred at points r = u  where u is the distance 
between two magnetic atoms in the crystal. Wilkinson 
(1973) has shown that in the vicinity of the peak 
centred at r=u ,P ( r )  is given by 

P(u+ x)= f {f~(Ixl)S(r). S(r +u) 
I v  

+f2(lxl) [S(r). x] [S(r + u). x]}dr (4) 

where the integration is over the crystal volume, and 
f~(lx[) and f2(lx[) are functions of the distance x from 
the centre of the peak. The contribution of a pair of 
spins, whose magnetic atoms are separated by u, to 
this peak is: 

f~(lx[)S(r). S(r + u) 

+f2(lx[) [S(r). x] [S( r+u) .  x].  (5) 

The first term gives a spherically symmetric contri- 
bution to the peak, and the second a non-spherically 
symmetric contribution elongated along the bisector 
of directions of the spins S(r) and S(r+u).  The peak 
centred at r=u ,  see equation (4), is the superposition 
of contributions of the form (5) from all pairs of spins 
whose corresponding magnetic atom positions are 
separated by u. 
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We will first determine the intrinsic symmetry of the 
SDPF, that is, the symmetry of the SDPF due to 
definition (4) and independent of the spin arrangement 
of the crystal. We will then determine the symmetry 
of the SDPF due to the spin-group symmetry of the 
spin arrangement of the crystal. 

The intrinsic symmetry of the SDPF is found by 
considering equation (4) from which one finds: 

P ( u + x ) = P ( u - x )  (6a) 

P ( u + x ) = e ( - u + x )  (6b) 

P (u + x) = P ( -  u - x). (6c) 

Equation (6a) means that each peak of the SDPF is 
centrosymmetric about its centre, equation (6b) that 
peaks whose centres are centrosymmetrically related 
with respect to the origin are identical, and equation 
(6c) that the SDPF is itself centrosymmetric. 

The symmetry of the SDPF due to the spin-group 
symmetry of the spin arrangement is derived using 
equations (1), (2), and (4). If the spin arrangement 
S(r) is invariant under a spin-group element 
[R~IIRz[V], then from equations (1) and (2) we have 

3 

Si(r) = ~ (RO,jSJ[(RzIV) -'r] 
j = l  

where i=1,2,3. Substituting this relation into the 
integrand of equation (4) one derives: 

e ( u +  x) = P(R~- ~u + R7 ~x). (7) 

Relation (7) means that the peak of the SDPF at 
R~'~u rotated by R~ about its centre is identical with 
the peak of the SDPF at u. 

If a spin arrangement is invariant under a spin 
translation [AIIEIt] where A=E or /7 (corresponding 
to pure translations and translations coupled with 
time inversion respectively), using equations (1) and 
(2), and substituting into the integrand of equation 
(4), but replacing one of each pair of spins, one derives 

P(U+X)=eAP(U--t+x) (8) 
where eA = + 1 if A = E and ea = - 1 if A = E. The peak 
of the SDPF at u - t  is thus identical with the peak at 
u if A = E, or of opposite sign if A =/7. 

The symmetry of the SDPF due to spin-only group 
elements [RIIE[0], where R is an element of a group b 
given in equations (3), and non-trivial spin translation 
group elements [RllEIt], for any rotation R, can be 
derived as a special case of equation (7), and one 
finds that: 

P (u+  x)= P(u+ R - ~x). (9) 

Every peak is thus invariant under the rotation R 
about the peak centre. The invariance of every peak 
under the rotation is, in the case of spin-only group 
elements, due to the fact that all spins are either 
collinear or coplanar. [In the case of spatial spin 
arrangements bs=E {see equation (3)}, and equation 
(9) becomes an identity.] In the case of non-trivial 

spin translation elements [RIIEIt], equation (9) is due 
to relationships between overlapping contributions of 
pairs of spins to each peak. 

If the spin arrangement is invariant under [RIIEIt], 
then for every pair of spins S(r) and S(r+u) which 
give a contribution (5) to the peak of the SDPF at 
r=u ,  there is a second pair of spins R S ( r - t )  and 
R S ( r - t + u )  which also contribute to the same peak. 
Both pairs of spins contribute identical spherically 
symmetric contributions, but the non-spherically sym- 
metric contributions of the former pair of spins is 
rotated by R about the centre of the peak at r = u with 
respect to the non-spherically symmetric contribution 
of the latter pair of spins. Each peak of the SDPF is 
then a superposition of contributions of the form of 
equation (5) elongated in directions related by the 
rotation R, and consequently is invariant under this 
rotation. 

We now will show that elements of space groups are 
in general inadequate to describe the symmetry of the 
SDPF given in equations (7), (8), and (9) due to the 
spin-group symmetry of the spin arrangement. We will 
then define a generalization of space groups which is 
capable of describing these symmetries of the SDPF. 

The standard notation of elements of a space group 
is (RIV). Applying a space-group element (RIV) to a 
SDPF P(u+x)  means replacing P(u+x)  by the 
function denoted by (RIV)P(u + x) and defined by: 

( g l v ) e ( u + x ) = e ( ( R l V ) - a u + R - l x )  . (10) 
A SDPF is said to be invariant under a space-group 
element (RIV) if: 

(RIV)P(u + x)= P(u + x).  (11) 

From equations (10) and (11), if the SDPF is invariant 
under the space-group element (R[V) then: 

P(u+ x) = p[(RIV)- lu + R - ' x ] .  

Comparing this to equations (7), (8), and (9), one 
finds that space-group elements describe only those 
symmetries of the SDPF due to spin-group symmetries 
of the spin arrangement of the form [RIIRIV] and 
[EIIEIt]; that is, describe only those symmetries of 
the SDPF due to those magnetic-group symmetries of 
the spin arrangement of the form [eAfiRRI]RIV], R # E  
when eaJa = 1, and due to 'non-magnetic' translations 
[EIIEIt]. 

We therefore introduce generalized space-group 
elements of the SDPF which we shall denote by 
{R~IIRzIV}. Applying a generalized space-group element 
{RIIIR2IV} to a SDPF P(u+x)  shall be defined to 
mean replacing P(u+x)  by a new function denoted 
by {R~HR2[V}P(u+x) and defined by: 

{RxlIR~.IV}P(u+x):P((RzIV)-lu--t -Ri-xx). (12a) 

In addition we define elements {RIIIR2[V}' such that: 

{RIIIR2IV}'P(u+ I ) =  - (RxIIRzIV}P(u+ x) , (12b) 
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A SDPF is said to be invariant under {RxIIR2IV} and 
{RIIIRzIV}' if, respectively 

{RIIIRzIV}P(u+ x)= P(u+ x) (13b) 

{R~IIR2[V}aP(u+x)=P(u+x) (13b) 

and the set of all such elements constitute the genera- 
lized space group of the SDPF. 

The symmetry of the SDPF due to the spin-group 
symmetry of the spin arrangement, see equations (7), 
(8), and (9), is expressed in terms of generalized space- 
group elements defined in equations (12a,b) as follows: 

[RxlIRzlV] {RxI[RzlO} 
[RIIEIt] {RIIEI0} 
[R]IEI0] {RIIEI0} 

[EIIEIt] {EtlEIt} 
[EIIglt] {EIIEIt}'. 

(14) 

In the left-hand column are listed spin-group symmetry 
elements of a spin arrangement, and the corresponding 
generalized space-group elements of the SDPF are 
listed in the right-hand column. From the intrinsic 
symmetry of the SDPF given in equation (6), every 
SDPF is invariant under the following generalized 
space-group elements : 

{EllEI0), {EIIEI0}, {EIIEI0}. (15) 

Because of the intrinsic symmetry of the SDPF, 
one may not be able, from the generalized space- 
group symmetry of the SDPF, to determine uniquely 
the spin-group symmetry of the spin arrangement. 
For example, if the SDPF is invariant under {RIIIRa[0}, 
then owing to the intrinsic symmetry, see equation 
(15), it is invariant under the four generalized space- 
group elements { + Rill + R210}. Using equation (14), 
these symmetries of the SDPF imply the spin-group 
symmetries [ + Rill + RzlV] of the spin arrangement. The 
ambiguity of the sign of R2 can be resolved if the 
space group of the magnetic atom arrangement is 
known and does not contain inversion. 

The use of generalized space groups to describe the 
symmetry of the SDPF enables one to determine from 
the symmetry of the SDPF information on the spin 
symmetry group of the spin arrangement. This in turn 
provides information on the orientation of the spins 
in the crystal. In general this will be more information 
on the orientation of the spins than one is able to 
obtain by considering the space-group symmetry of 
the SDPF and the magnetic-group symmetry of the 
spin arrangement, since the magnetic symmetry group 
of a spin arrangement is in general a subgroup of the 
spin arrangement's spin symmetry group. 

Consider the hypothetical magnetic structure given 
by Wilkinson & Lisher [1973, Fig. l(a)] and below in 
Fig. 1. The space group of the magnetic atom arrange- 
ment is P4 and the magnetic space group of the spin 
arrangement is P2'. The spin group of this spin ar- 

rangement is bzxP[EII410], the direct product of a 
spin-only group of a collinear spin arrangement, and 
a non-trivial spin group containing the group of trans- 
lations [EIIEIt], denoted by P, and a non-trivial spin 
point-group of elements, [EIIE]0], [EII4[0], [EII2[0], and 
[El[4-110]. The classification labels of this spin arrange- 
ment, using magnetic groups (Opechowski & Dreyfus, 
1971), and using spin groups (Litvin & Opechowski, 
1974), are respectively 

[P4; P2', S(rl)=S(r2)=6] 

(P4; bz × P[EII4[0], S(rl)=6) 

where rl = (x,y, 0) and r2 = 4- lrl .  
The spin arrangement is generated from a single 

spin by the spin group, while it is generated from two 
spins by the magnetic group. Consequently, informa- 
tion on the relative orientation and magnitude of the 
spins S(r0 and S(r2) is not contained in the magnetic 
symmetry group of this spin arrangement, while the 
spin symmetry-group element [EII410], determined by 
the generalized space-group symmetry {E[1410} of the 
SDPF, implies that S(r0 = S(r2). 

4. Spiral spin arrangements 

Wilkinson & Lisher (1973) have shown that in the 
analysis of the SDPF of multi-domain magnetic crys- 
tals, one may be unable to obtain information con- 
cerning the orientation of the spins with respect to 
crystallographic directions. This was shown to be due 
to the superposition of contributions to each peak of 
the SDPF from each of the domains. We will show that 
similar information loss does occur in the SDPF of a 
single-domain magnetic crystal with a spiral spin ar- 
rangement. 

The information on the orientation of the spins 
with respect to the crystallographic directions is con- 
tained in the second, non-spherically symmetric, term 
of the contribution, see equation (5), of pairs of spins 
to the peaks of the SDPF. In a SDPF all pairs of 
spins whose magnetic atoms are separated by u con- 
tribute to the peak of the SDPF at r=u.  As we have 
seen in equation (14), if the spin arrangement is 
invariant under a spin-group translation [RilE[t], the 
SDPF is invariant under the generalized space-group 
element {R[[EI0}, i.e. overlapping contributions to 
each peak are related by the rotation R and each peak 
is invariant under the rotation R about the peak's 
centre. As we will show below, it is this invariance of 
the SDPF, under generalized space-group elements 
{RUE[0} due to the non-trivial spin translation group 
elements [RI[EIt] which causes a loss of information 
on the orientation of the spins which can be obtained 
from the SDPF. Spin-group elements of a spin ar- 
rangement not of the form [R[IE[t] in general do not 
give relations between overlapping contributions to 
peaks in the SDPF, and consequently do not give rise 
to any information loss. 
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We calculate the form of the SDPF corresponding 
to spin arrangements which are invariant under a 
non-trivial spin translation group. To the group of 
elements [RIIEIt] of a non-trivial spin translation group 
there corresponds a group of generalized space-group 
elements {RIIEI0} of the SDPF. The set of rotations 
R of such elements constitutes a group R. Since 
{EIIEI0} is an intrinsic symmetry element of the 
SDPF, see equation (15), we consider instead of the 
group of elements {RIIE[0}, the group of elements 
{QIIE]0} where the group of proper rotations O is 
derived from R by replacing every improper rotation 
R by the proper rotation/~. All non-trivial spin trans- 
lation groups have been derived (Litvin, 1973), and 
possible groups O are Q=C2, Dz, and C~o. The group 
C 2 contains a single rotation through an angle of n, 
and Dz contains three mutually perpendicular rotations 
through an angle of n. C~0 denotes a group of rotations 
about a single axis generated by one, two, or three 
rotations through angles of 2n/M where the M are 
integers or irrational numbers. 

We apply an element {QI[E[0} to a SDPF P(u+x) .  
Using equations (12a) and (13a), summing over all 
Q of Q, and dividing by the order N of the group Q, 
we obtain the following expression for the SDPF of a 
spin arrangement invariant under a non-trivial spin 
translation group: 

P(u+ x)= f f~(lxl)S(r). S(r +u)dr 

+ --~ ~ ~ QijQmn f2(lxl)St(r)Sm( r +u)XjXndr. 
i jmn 0 

(16) 

St(r) denotes the ith component of S(r) and J(j the 
j th component of x. The components of S(r) and x 
will be taken below in an orthogonal coordinate 
system, denoted by 2, .9, and -L which will be dependent 
on the orientation of the rotation axes of the rotations 
of the group O and not on the crystallographic axes 
of the crystal. In the case where Q=C2 and C~o, :? 
denotes the direction of the rotation axis of the ro- 
tations of Q, and )7 and ~7 denote two arbitrary per- 
pendicular directions. In the case Q =  D2 2, 37, and ~, 
denote the directions of the three mutually perpendi- 
cular rotation axes of Q. 

In the case where Q--Ca, the second term of equation 
(16) becomes 

1 ,  

+ S-;(r)S;(r +u)}Xz, X;]dr 

and in the case where Q =  Dz 

Ifz(lxl) [ ~ S'(r)Si(r +u)X~]dr 

where i=x,y,z. In these two cases there is no infor- 
mation loss concerning the orientation of the spins 

with respect to the crystallographic axes (Wilkinson 
& Lisher, 1973; Appendix I). 

We define a spiral spin arrangement as a spin ar- 
rangement whose non-trivial spin translation group 
symmetry gives rise to the invariance of the corres- 
ponding SDPF under the group of generalized space- 
group elements {QllEI0} where O=C.. In this case, 
the second term of equation (16) becomes: 

!f2(lxl)[{SZ(r)SZ(r + u ) +  S~-(r)SY(r + +u)}(X} X~) 

+ ST(r)ST(r + u)X~]dr. (17) 

In the case of spiral spin arrangements, as a con- 
sequence of equations (16) and (17), the SDPF is 
invariant not only under {QIIEI0} for all Q of Q due 
to the non-trivial spin translation group symmetry of 
the spin arrangement, but is also invariant under 
{C~dlEI0} where C=~ is an element of C=~, the group 
of all rotations about the ~ axis. Therefore, one can 
not determine from the symmetry of the SDPF of a 
spiral spin arrangement the spiral spin arrangements 
characteristic non-trivial spin translation group sym- 
metry. 

A method to determine from a SDPF a spiral spin 
arrangement's non-trivial spin translation group sym- 
metry is based on the comparison of peaks in the 
SDPF and is as follows: Let R denote a proper rotation 
through an angle of ~ degrees about the ~ axis. If 
[RIIEIt] is a symmetry element of the spiral spin ar- 
rangement, using equations (2), (16), and (17), one 
finds that 

P(nt + x) =cos  (n~) f [SX(r)Z + ST(r)z] [fl(Ixl) 

+A(Ixl) (X~ + X})]dr + I ST(r)[f~(Ixl) 

+f2(Ixl)X~]dr (18) 

where n is an integer. If R is an improper rotation, a 
rotation through an angle ~ degrees about the 2 axis 
followed by a reflexion in the 237 plane, then the coef- 
ficient ( -  1)" must be inserted in equation (18) in front 
of the second integral. By comparing peaks of the 
SDPF one can then determine the characteristic non- 
trivial spin translation symmetry group of a spiral 
spin arrangement.* 

From the SDPF of a spiral spin arrangement, see 
equations (17) and (18), one can determine the orien- 
tation of the ~? axis with respect to the crystallographic 
directions, the components of the spins parallel and 
perpendicular to the 2 axis, and the spiral spin ar- 
rangement's non-trivial spin translation group sym- 
metry which determines the mutual orientation of the 
spins. But one cannot determine the orientation, with 

* It has been pointed out by the referee of this paper that 
a relation similar to equation (18) has been derived by Lisher 
(1972). 
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respect to the crystallographic directions, of the com- 
ponents of the spins perpendicular to the :~ axis. 

5. Multi-domain spin density Patterson function 

In the previous sections we have discussed the SDPF 
of a magnetic single crystal, that is, the Fourier trans- 
form of the intensity I(k) of unpolarized neutrons 
elastically scattered from a magnetic single crystal: 

P ( u + x ) =  I I(k) exp [ -  ik .  (u + x)]dk. (19) 

In the case of a multi-domain sample of a magnetic 
crystal one measures not the intensity I(k) but I(k) 
where 

I 
I(k)= --N ~ I(Rk) (20) 

T 

and where the sum is over all rotations of the point 
group R, of order N, associated with the space group 
F of the magnetic atom arrangement. The SDPF of a 
multi-domain sample will be called the averaged SDPF, 
denoted by P(u+x),  and is the Fourier transform of 
I(k): 

P ( u + x ) =  I I (k)exp [ - i k .  (u+x)]dk. (21) 

In this section we will discuss the symmetry of the 
averaged SDPF and will show that one can infer 
from the symmetry of the averaged SDPF neither the 
magnetic space-group symmetry nor the spin-group 
symmetry of the spin arrangement. 

From equations (19), (20), and (21), one derives that 
the averaged SDPF can be written in the form: 

1 
P(u+  x)= ~ ~ P(Ru+ Rx). (22) 

To compare the results below with the work of Wilkin- 
son & Lisher (1973) we introduce the notation 
P[u + x ;S(r)] for the SDPF due to the spin arrangement 
S(r). In this notation equation (22) is written as: 

1 P[u+x; S(r)]= ~ ~ P[Ru+Rx; S(r)] . (23) 

An alternative form of equation (23) can be derived by 
using equation (4): 

1 
P[u+x;  S(r)]= ~-  ~ P[R-lu+R-1; S(r)] 

1 ? 
- N ~ 1 {fi(Ixl)S(r). S(r + R-lu) 

+f2(Ixl)[S(r). R-ix] [S(r + R-Iu) .  R-*x]}dr 

1 
- N ~ I {f~(Ixl)RS[(RIV(R))-~r]" 

× RS[(RIV(R)]-I(r  + u)l 
+ f 2 ( I x l ) [ R S [ ( R I V ( R ) ] - ~ r )  . x] [ R S [ ( R I V ( R ) ]  -~ 

x (r + u). x]}dr 

where [RIV(R)] is an element of the space group F. 
Consequently: 

1 R~ P{u+x;  [RIIRIV(R)]S(r)} P[u+x; S(r)]= ~ 

(24) 

The averaged SDPF can then be interpreted, from 
equation (23), as a superposition of the SDPF 
P[u+x;  S(r)] and rotated images P[Ru+Rx; S(r)] of 
the same SDPF; or from equation (24) as the super- 
position of several SDPF's P [u+x ;  [RIIRIV(R)]S(r)] 
associated with different spin arrangements. 

The expressions for the averaged SDPF cannot in 
general be simplified; however in the following two 
cases, equations (23) and (24) do take on simpler 
forms. First consider a spin arrangement defined on a 
magnetic atom arrangement of space-group symmetry 
F, and such that for every rotation [RIV(R)] of F the 
spin arrangement is invariant under the spin group 
element [EIIRIV(R)] or [-EIIRIV(R)]. Such spin ar- 
rangements include all ferromagnetic spin arrange- 
ments, see for example Fig. 1, where [EIIRIV(R)] is 
a symmetry element of the spin arrangement for every 
rotation [RIV(R)] of F; and many antiferromagnetic 
spin arrangements, e.g. the antiferromagnetic iron- 
group fluorides MnF2, FeF2, and CoF2 (Brinkman & 
Elliott, 1966). With equations (6a) and (14), equation 
(23) becomes in this case 

i 

t 

i 
(a) 

0 

0 J ! 
0 

0 

0 
1 

0 0 

! B 0 IB-- t 
L I A 
[ I I I  $ 

• 0 0 • 

D D 0 $ 0 
L | L 
r 0 05~ 0 

0 0 1 
(b) 

Fig. 1. A spin arrangement of magnetic space-group symmetry 
P2' and spin space-group symmetry b~ x P[EII410] is given in 
(a) and its corresponding spin-density Patterson function in 
(b). 
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1 ~ P[u+Rx; S(r)] P [ u + x ;  S(r)]= ~-  

and equation (24), as P [u+x ;  - S ( r ) ] =  P [u+x ;  S(r)]: 

1 
P [ u + x ;  S(r)]= -~ ~ P [ u + x ;  RS(r)]. (25) 

Equation (25) has been used by Wilkinson & Lisher 
(1973) to tabulate the form of the averaged SDPF for 
all possible point groups R. We stress, however, that 
while equation (25) is the expression for the averaged 
SDPF for all ferromagnetic and many antiferro- 
magnetic spin arrangements, it is not valid for all spin 
arrangements. 

A second case in which equations (23) and (24) 
take on a particularly simple form is when for every 
rotation [RIV(R)] of F the spin arrangement is invariant 
under the magnetic space-group element [RIIRIV(R)] 
or [-RIIR}V(R)]. Such spin arrangements include that 
of YMnO3 (Bertaut, Pauthenet & Mercier, 1963) and 
the example of Fig. l(b) of Wilkinson & Lisher (1973). 
In this case both equations (23) and (24) become 

P[u+ x; S( r ) ]=P[u+ x; S(r)], 

that is, the averaged SDPF is identical with the single- 
crystal SDPF. 

As to the symmetry of the averaged SDPF, one 
finds that one cannot infer from the symmetry of the 
averaged SDPF the rotational magnetic space-group 
symmetry of the spin arrangement. This is due to the 
fact that from equations (6) and (22) one has, using 
the notation of equation (22), 

P (u+  x ) = P (  + g u +  Rx) 

and the averaged SDPF is invariant under {+ Rl[+ 
RI0} for every R belonging to the point group R of 
F. Consequently, one cannot infer from the symmetry 
of the averaged SDPF, using equation (14), the rota- 
tional magnetic space-group symmetry of the spin 
arrangement. There is also no guarantee that one can 
infer the translational symmetry [EllElt] of the spin 
arrangement from the symmetry of the averaged 
SDPF. From equation (22) we have 

1 
P ( u + t + x ) =  ~ ~ P(Ru+Rt+Rx) 

and this in general will not be equal to P(u+x)  since 
although the translational symmetry [EIIEIt] of the 
spin arrangement does imply that P (u + t + x) = P (u + x), 

it does not imply in general that P(u + Rt + x) = P(u + x), 
for all rotations of B. 

If the spin arrangement is invariant under the spin- 
group element [R~IIRzlV(Rz)+t] then from equations 
(4), (14) and (22) one derives that 

1 ~ P(R2Ru+R1Rx) e(u+x)= U 

and since R 2 belongs to the point group iq, by changing 
the summation from over R to over RzR, this relation 
takes on the form: 

1 
P(u+x)  = ~-  ~ P(Ru+ RIR~Rx) .  (26) 

While in principle one may be able to derive infor- 
mation from equation (26) on the product of rotations 
R1R7 ~, e.g. if R1R~ ~ commutes with all rotations of 
R, then P(u+x)=P(u+R~RT~x), it is, however, 
doubtful that in general any information on the spin- 
group symmetry of the spin arrangement can in 
practice be obtained from equation (26). 

We conclude then that one can obtain detailed in- 
formation on the spin-group symmetry of a spin ar- 
rangement from the symmetry of a single-crystal 
SDPF, but in general no symmetry information can 
be obtained from the symmetry of the averaged SDPF. 
This however does not imply that no information at 
all is available on the spin arrangement from the aver- 
aged SDPF, as has been shown by Wilkinson & Lisher 
(1973) based on the use of equation (25). 
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